A Highly Accurate Prediction Algorithm for
نویسندگان
چکیده
Quality of Service (QoS) guarantee is an important component of service recommendation. Generally, some QoS values of a service are unknown to its users who has never invoked it before, and therefore the accurate prediction of unknown QoS values is significant for the successful deployment of Web service-based applications. Collaborative filtering is an important method for predicting missing values, and has thus been widely adopted in the prediction of unknown QoS values. However, collaborative filtering originated from the processing of subjective data, such as movie scores. The QoS data of Web services are usually objective, meaning that existing collaborative filtering-based approaches are not always applicable for unknown QoS values. Based on real world Web service QoS data and a number of experiments, in this paper, we determine some important characteristics of objective QoS datasets that have never been found before. We propose a prediction algorithm to realize these characteristics, allowing the unknown QoS values to be predicted accurately. Experimental results show that the proposed algorithm predicts unknown Web service QoS values more accurately than other existing approaches.
منابع مشابه
Prediction of Breast Tumor Malignancy Using Neural Network and Whale Optimization Algorithms (WOA)
Introduction: Breast cancer is the most prevalent cause of cancer mortality among women. Early diagnosis of breast cancer gives patients greater survival time. The present study aims to provide an algorithm for more accurate prediction and more effective decision-making in the treatment of patients with breast cancer. Methods: The present study was applied, descriptive-analytical, based on the ...
متن کاملA New Highly Controllable and Accurate Algorithm for Defuzzifier Circuit Implementation
Defuzzifier circuit is one of the most important parts of fuzzy logic controllers that determine the output accuracy. The Center Of Gravity method (COG) is one of the most accurate methods that so far been presented for defuzzification. In this paper, a simple algorithm is presented to generate triangular output membership functions in the Mamdani method using the multiplier/divider circuit and...
متن کاملImproving Accuracy of DGPS Correction Prediction in Position Domain using Radial Basis Function Neural Network Trained by PSO Algorithm
Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Fun...
متن کاملDevelopment of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm
Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites. In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...
متن کاملNeuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements
In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...
متن کاملPrediction of soil cation exchange capacity using support vector regression optimized by genetic algorithm and adaptive network-based fuzzy inference system
Soil cation exchange capacity (CEC) is a parameter that represents soil fertility. Being difficult to measure, pedotransfer functions (PTFs) can be routinely applied for prediction of CEC by soil physicochemical properties that can be easily measured. This study developed the support vector regression (SVR) combined with genetic algorithm (GA) together with the adaptive network-based fuzzy infe...
متن کامل